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Abstract. Equations of motion for model colloidal particles are derived, which include a 
mean-field local density representation for the many-body-hydrodynamics (MBH) interactions. 
These are implemented as a modification of Erma!& 1915 Brownian dynamics free-draining 
algorithm, with a local density prescription for the friction coefficient. The computed long-time 
selfdiffusion coemcienls derived from this model agree well with experiment at all volume 
fractions. The hydrodynamics model relative and dynamic viscosities are larger than those of 
the free-draining algorithm, reflecting slower structural relmtion processes taking place in the 
new model. 

1. Introduction 

Since the development of the Brownian dynamics simulation technique by Ermak (1975) 
a goal has been to improve the model to include the effects of many-body-hydrodynamics 
(MBH) solvent-mediated forces that lead to highly correlated instantaneous trajectories 
of the suspended particles. A number of approaches have been proposed for including 
MBH in discrete-particle simulations. Many are based on the ‘far-field‘ diffusion tensor 
expansion method proposed by Ermak and McCammon (1978) and extended to higher-order 
terms by, for example, Durlofsky~et al (1987), Ladd (1990) and Cichocki et al (1994). 
These methods are extremely time consuming to implement, as they involve O(N3)  matrix 
inversions (where N is the number of colIoidal particles) and involve the computation of 
correlated Brownian forces between different particles to satisfy the fluctuation-dissipation 
theorem. Consequently only relatively small systems of several hundred particles at most 
have been considered to date, which restricts these techniques to modelling stabilized 
colloidal systems. The important area of flocculation is effectively beyond the scope of 
this approach for the foreseeable future, as long-range (possibly fractal) structures can be 
important in determining many of the physical properties of these systems. Convergence 
of the interaction expansion at short range has also been a problem in these techniques, 
and near-field ‘lubrication’ interactions have had to be introduced in an ad hoc manner. 
The simplicity of the original Ermak algorithm has been lost and in these modifications the 
useful transparent link between the behaviour and characterization of a ‘typical’ individual 
particle and computed macroscopic properties has been abandoned. It is still not clear 
what level of implementation is required for the (‘short’) time-scale associated with the 
correlated Brownian forces. (On this time-scale the particle displacements are negligible 
when compared with their diameters.) Significant structural relaxation behaviour and 
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rheological properties are typically associated with much longer time-scales-the so-called 
‘long’ time-scale. Owing to a clear separation between these two time-scales, it is possible 
that a detailed description of the short-time many-particle dynamics (as outlined above) 
is not required. Indeed it is possible that a relatively simple treatment of the short-time 
behaviour is sufficient to give rise to a realistic description of rheological phenomena. 

In response, to remedy these deficiencies. and to explore this hypothesis, we propose a 
new algorithm that includes some of the effects of MBH but retains the non-tensorial form 
of the original Ermak algorithm. It recognizes that there are well-defined time-scales in a 
colloidal liquid. The ‘short’ time-scale is that of the density fluctuations of the solvent in an 
essentially arrested configuration of colloidal particles. The effects ofphenomena originating 
on this time-scale are introduced into the model through a rescaling of the model’s short- 
time self-diffusion coefficient to that known for experimental near-hard-sphere systems. The 
particle friction coefficient in the free-draining model has the infinite-dilution value, ro. Here 
in the new model we adopt a local density approximation for the friction coefficient, so that 
5 z CO, which is consistent with this rescaling. This leads to a more realistic slowing down 
of structural relaxation processes (compared with Ermak algorithm) on the rheologically 
relevant ‘long’ time-scale. 

2. Theory 

The Ermak BD algorithm (Ermak 1975) is based on the Smoluchowski equation 

- a p  = Do V 2 P  - -V Do 
at kB T . ( F P )  

where P is the probability distribution function that a particle in the system will undergo 
a displacement, AT, during a time interval At .  DO = k ~ T / 3 z u q $  is the self-diffusion 
coefficient of the colloidal particle with equivalent hard-sphere diameter U in a solvent 
of viscosity qs in  the limit of infinite dilution. k8 is the Boltzmann constant and T is 
the absolute temperature. F(T,  t )  is the net force on the colloidal particle from the other 
colloidal particles and any position-dependent external field. 

If the coordinate of colloidal particle i is Ri let RN = { R I ,  . . . , RN]. If the friction 
coefficient is made configuration dependent, i.e., 5 = r(RN), equation (1) is replaced by 

In the above equation and below we assume Vi4 = 0 and Vi . fi  = 0 only when 
involved in terms resulting in V i P i .  This is an approximation and is justified on the 
grounds that the terms in V i P i  and V;Pi dominate the diffusion equation. The missing 
term P V  . (FC) involves the spatial variation of F ,  i.e., V . F .  This will lead to a 
higher-order term in any position-update algorithm. The computer simulations suggest that 
this term is insignificant with typical time steps used. Simulations performed from the 
algorithm derived from these simplified equations generate a canonical ensemble (i.e., give 
the same thermodynamic quantities and distribution functions as the free-draining model), 
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so the simplification appears not to introduce any serious errors in practice. The solution 
to equation (2) is 

Equation (3) does not generate a canonical ensemble for the potential field associated 
with F (owing to the kBT<-' Vg term). Nevertheless if we define 

F = Fo - k8Tf-I V< 

T( t  + at) = T ( t )  + F(t )  AZ/~(R'") + A T ~ ( ~ ( I P " )  

(4) 

(5 1 
then the algorithm 

where ArB is the random displacement sampled from a Gaussian distribution of zero mean 
and variance, (AT*) = 6D0 At will generate the canonical ensemble for the interaction 
field U, where f i 0  = -Vivo. U0 is a sum over particles. A simulation carried out with a 
force field F derived from a potential field U generates a Boltzmann distribution of states 
appropriate to Uo(RN). The analytic form of { (R)  is not known. It is reasonable to assume 
that the friction coeflicient will increase as more colloidal particles approach closely to an 
arbitrary colloidal particle, and therefore a reasonable analytic form is 

where I is the separation between the particle centres, C is a constant, m is an arbitrary 
exponent. 50 = 3xuqs, and E sets the energy scale. The proposed analytic form goes to the 
correct limit, CO, at infinite dilution and increases strongly at high volume fraction; this arises 
from the crowding effects of the surrounding colloidal particles. It is reasonable to expect 
that at finite volume fractions the effective range of the interaction should not extend further 
than the first coordination shell of particles, which is achieved if m =- 12. The analytic 
form chosen is similar to that of the direct interaction law, U,. of interest here, and thereby 
allows the development of a manageable algorithm. If we assume that the thermodynamic 
interactions between the colloidal particles can be represented on a pairwise-additive basis 
with a pair potential of the generic form 

Udr,  n )  = E ( u / T ) -  

SO that F(n) = -VUo(n, BN)  then 

(7) 

-kBT<-' V< = <oCkBT<-'F(m). (8) 

The position-update algorithm becomes 

~ ( t  + At) = r(t) + (F(n,  t )  + <oCksT<(RN)-'F(m, t ) )Ar /<(RN)  + A r B t < ( R N ) ) .  (9) 
If we let m = n then 

T ( t  + at) = ~ ( t )  + ( I  + c ~ c ~ ~ T < ( R ~ ) - ~ ) F ( ~ .  t )  A ~ / < ( R ~ )  + A T ~ ( < ( R " ) ) .  (10) 
The important point about this algorithm is that it generates a canonical ensemble for the 
potential field defined by particles interacting through equation (7). The value of C is 
adjusted at each volume fraction so that the mean square displacements arising from the 
Brownian force are consistent with the experimentally derived value for the short-time 
diffusion coefficient, D,v. i.e., 

((ArB)') = 6 k ~ T ( < - l ( R ~ ) )  At = 6 0 ,  At  (11) 
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where (Lionberger and Russel 1994) 

- =  ”‘ (1.00 - 1.566)(1.00- 0.276) 
Do 

is a good approximation. The long-time self-diffusion coefficient, DL, fitted to the 
experimental data of Medina-Noyola (1988) and Goodwin and Ottewill (1991) between 
0.04 < @ < 0.5 is 

0.8(1.00 - 1.156)(1.00 - 2.004). DL 
Do 
-= 

3. Simulation details 

We consider a cubic simulation cell interacting with an inverse power potential given in 
equation (7) with the values, E = ksT and n, m = 36 truncated at rij > 1.30, and n,  m = 18 
truncated at rjj > 2.2u, which is the case of the parameter n for our previous studies (see, 
e.g., Heyes and Mitchell 1994). The number of molecules in the BD cell, N ,  is 108 or 
256. The reduced number density p = N u 3 / V ,  where V is the volume of the simulation 
cell. The volume fraction, 4 = 11p/6, is more commonly used in the colloid literature, 
and we therefore use this quantity instead of p. Calculated thermodynamic and structural 
properties are quoted in particle-bad reduced units, e.g., U for length and 6 for energy. 
The time step was typically 1.0 x 10-4aZ/Do where a I s  the radius of the colloidal particle. 
Production simulations were for in excess of 100aZ/Do. 

For the inverse power potentials considered here, the interaction energy, pressure 
and mechanical properties are trivially related (Heyes and Mitchell 1994). The average 
interaction energy per particle, U, is given by 

The infinite-frequency shear-rigidity modulus in the zero-strain-amplitude limif G ,  = 
G’(o + CO), is given by 

G, = (nZ - 3n)p(u)/15 (15) 
using the formula of Zwanzig and Mountain (1965). The stress tensor, U, in this model is 
given by 

The present model. does not compute the MBH contribution to the stress, as this i s  determined 
during the short-time regime, characteristics of which are incorporated in the model rather 
than being derived properties of the model. The current model still only calculates the 
thermodynamic contribution to the stress (as for the original Ermak algorithm), but has a 
more realistic prescription for the time evolution of the colloid assembly (which does have 
the effects of MBH implicit in it). The new model therefore improves the representation 
of the system as it evolves over the long-time regime, with consequent improvement in the 
thermodynamic contribution to the viscosity. The Newtonian viscosity and linear response 
dynamic moduli are obtained using the shear-stress autoconelation function, Cs(t), defined 
as 
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where (. . .) indicates an average over time origins. 
If we assume that the hydrodynamic contribution to the viscosity is equal to a constant 

value at all frequencies (or alternatively shear rates), i.e., q,, then the Green-Kubo formula 
in the present model gives the difference between the Newtonian viscosity qo (the zero-shear- 
rate limit) and q,, the infinite-frequency viscosity (or alternatively the infinite-shear-rate 
viscosity). The Newtonian viscosity, qo, is then related to Cs(t) through 

170 = 'I, + Cx(t) dt. (18) I m  
1- 

We have for the dynamic moduli 

G*(o) = io  C&)e-'"' dt (19) 

where the complex shear modulus G*(o) = G(o) + iG"(o) (the storage and loss moduli 
respectively). Also the complex viscosity is given by ?*(U) = G*(o)/io. I n  order to obtain 
qm = q'(o) = G"/o as o 4 00, the system would have to be modelled realistically on 
the time-scale of the density fluctuations of the solvent, using for example a lattice gas 
treatment (Ladd 1993). The computation of the system on this time-scale is beyond the 
scope of the current model. Therefore all viscosities reported below are implicitly assumed 
to be relative to the reference 'hydrodynamic' viscosity, qm, and are also normalized by 
the solvent viscosity, qs. The model also does not compute the single-particle contribution 
to the viscosity, given by Einstein's expression q = qJ1 +2.5@) (Russel et nl 1989) which 
therefore has to included on comparison with experimental data. 

The self-diffusion coefficients were obtained from the force autocorrelation function, 
generalizing the treatment of Akesson and Jonsson (1985): 

f 

W )  = Do - 1 (1 - t'/tf((F(O)/C(O)) . (W)/C(f'))) dt'. (20) 

All correlation functions were computed using a fast-Fourier-transform (FIT) method 
(Futrelle and McGinty 1971). (The method of calculating diffusion coefficients from p h c l e  
displacements cannot be cast into a working FFT expression.) Correlations were made over 
-40000 time steps, owing to the small time step used (the correlation functions were 
typically for a time of 3 . k 2 / & ) .  The Brownian force term in the equations of motion 
necessitates a very small time step, by molecular dynamics standards. The conventional 
multiplicative method in time (see Fincham and Heyes 1985) becomes prohibitively time 
consuming in this case. 

4. Results and discussion 

The computed moduli and viscosities are given in table 1 for a selection of modelled states. 
Two types of simulation were performed. Mean-field-hydrodynamics computations were 
carried out using either equation (9) or (10). Ermak's free-draining model was also used, 
by setting 6 = (0 and neglecting the C-term in equation (9) or (10). The table confirms that 
the computed infinite-frequency dynamic moduli, G,, are independent of the two algorithms 
considered. This is because G, is a static property of the system and is therefore uniquely 
defined by the canonical ensemble for a given interaction potential field. If the term in C 
in equation (10) is omitted and yet the friction coefficient is still computed using equation 
(6), the static properties differ from those associated with the interaction potential, and are 
functions of C .  The radial distribution function is also distorted, with excessive particle 
overlap. 
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Table 1. The mfinite-frequency shear-rigdit) modulus G, obtained using equation (15). The 
prameier C is only relevm~ in the MBH simulauons. Key: n IS thc cxponenl in Ihc inlrmction 
potcmd of equation (7) md m is the exponenl in the hydrodynamic mleracuon of cqunlion 
(6). FD refcrs 10 the Em& Browmm dynnrmcs lgorilhm of q u x i o n  (9) withuul thc l c m  in 
C md selling < = <( MFH refers 10 the mean-field-hydrodynamics version of equnion (9). 
1 0  = gJqy - I - 2 Se. (The 131ter two terms account for thc singlc-pmiclc conuibution IO the 
viscosity.) Thc standard enon in the last digit =e given in brackets. 

d n m c .v GFD G l F l l  &FD AWFH 

0.150 
0.3403 
0.3403 
0.3403 
0.400 
0.450 
0.450 
0.450 

36 36- 
36 36 
36 18 
36 36 
36 36 
18 18 
36 18 
36 36 

6.38 256 
3.80 108 
1.33 256 
3.80 ~256  
3.20 256 
1.07 256 
1.31 256 
2.73 256 

GO 

50 

40 

30 

20 

10 

0 

1.84(5) 
18,63(5) 
18.67(5) 
18.67(5) 
33.08(5) 
23.81(5) 
52.45(5) 
52.45(5) 

1.87(5) O.077(3) 
18.62(5) 0.81(2) 
18.61(4) 0.91(2) 
18.76(5) 0.91(2) 
33.136) 1.77(2) 
23.79(5) 2.65(4) 
52596) 4.416) 
52.68r5) 4.41(5) 

0.17(3) 
2.39(3) 
1.99(5) 
2.55(5) 
5.690) 

12.5(2) 
14.1(3) 
14.4(3) 

-10 ' 
0 0.5 1 1.5 2 2.5 3 

tDo/a2 
Figure 1. The shear-stress autoconelation function C&) for the state point N = 256,O = 0.450 
and n = m = 36 obtained using the two equations of motion. Key: the solid line is from the 
Ermak free-draining algorithm, which is given by equation (10) with C = 0 and < = to; the 
dashed line is for mean-field hydrodynamics (MFH) and was obtained using equation (IO) with 
C # 0. The corresponding plot of loglo(tDo/n2) is given in the inset. 

In contrast to static properties, the viscosities, 9,  are quite different in the two models. 
The MFH values are up to three to four times larger than the free-draining values. This is 
because the shear-stress autocorrelation function decays more slowly for the MFH system 
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than for the free-draining model (see figure 1 for an example). The viscosiues we calculate 
are proportional to the area under this curve. The free-draining-simulation viscosities are 
quite sensitive to the value of n in the interaction potential (they increase with n). This 
sensitivity diminishes somewhat on implementation of the MFH algorithm. The values of 
the viscosity then become comparatively insensitive to n and m. On fixing the short-time 
self-diffusion coefficient of the model to the experimental value, the values of C and m 
tend to compensate for variations in the other parameter resulting in an insensitivity in the 
long-time self-diffusion coefficient (see below) and the viscosity to the C- and m-values 
chosen. 

Table 2. As for table 1. except that the reladtion times defined by (‘10 - q‘(o + m))/G, are 
given. from ‘simulation and expeliment (Shikati and Peqson (1994), equation (A4). for Cm; 
Lionberger and Russel (1994) for ~‘(o -+ m); and van der Werffer a1 (1989) for qo(4)). r is 
in units of q,so’jks7. Note that T = AqjGm. 

0 
0.150 
0.3403 
0.3403 
0.3403 
0.400 
0.450 
0.450 
0.450 

- n m  

36 36 
36 36 
36 18 
36 36 
36 36 
18 18 
36 18 
36 36 

N 

2.56 
108 
256 
256 
256 
256 
256 
256 

- T F D  - 
0.042 
0.043 
0.049 
0.048 
0.054 
0.111 
0.084 
0.084 

rMfH 

0.091 
0.128 
0.106 

- 

0.136 
0.172 
0.525 
0.268 
0.273 

rexnl - 
0.200 
0.128‘ 
0.128 
0.128 
0.120 
0.123 
0.123 
0.123 

The shear-stress relaxation time, r = (qo - q’(w -+ 0o))/Gm = Aq/G,, is the area 
under the normalized autocorrelation function curve. Table 2 gives r-values computed 
by simulation and derived from experiment. The relaxation times are larger in the MBH 
case as is intuitively teasonab!& One expects short-range many-body hydrodynamics to 
slow down local structural relaxation through the increase in the local friction coefficient 
(i(R), which is defined in equation (6). There is still great uncertainty concerning the 
correct values of the viscosity and infinite-shear-rate modulus of high-volume-fraction near- 
hard-sphere dispersions (because it is not easy to obtain an accurate value for the volume 
fraction). Nevertheless, the fitted literature values, also shown in table 2, are close to, 
the computed values, typically lying between the free-draining and current MFH values 
(being somewhat closer to the latter). The frequency-dependent viscosity Iq*(w)l/q< shows 
a relative enhancement in intensity at all frequencies, bot especially at low frequencies, 
compared with the freedraining model (see figure 2 for an example), again reflecting slower 
structural relaxation in the latter case. 

The long-time self-diffusion coefficients, DL, are computed from D(f) as f + W. 
Table 3 presents the DL-values for the free-draining (FD) and MFH models. Considering 
first the FD model, we have at all volume fractions D.$ = DO, the self-diffusion coefficient 
of the colloidal particle at infinite dilution. Although DJDo < 1, the values are quite 
close to the experimental values of D,/Do. The DL-values computed using MFH are 
statistically indistinguishable from the experimental values. This suggests that the present 
simple implementation of short-time many-body hydrodynamics has realistic consequences 
for the long-time dynamics of the colloidal assembly. Structural relaxations have been 
slowed down by the inclusion of a < c (0, which can be viewed as a decrease in the 
effective temperature of the Brownian particles. In fact, the values of D f F H / D L D  are 
quite close to the computed value (ob/ ( ( ) .  In this model much of the enhancement of the 
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2.5 I I 

I 
100 

01 
a 20 40 GO 80 

uazIDu 
Figure 2. The absolute complex viscosity for the N = 256, @ = 0.3403 and n = m = 36 state; 
the key is as for figure 1. 

Table 3. The long-time selfdiffusion coefficients, DL. from the long-time limit of equation 
(20) as I -+ -3a2/&. The notation is as for table I. The standard errors in the last digit are 
given in brackets. The experimental values of D I .  come from equation (13). 

@ n m N W / f o  DFD/Do D f B H / D o  DFp'/Do 

0.150 36 36 256 2.05(1) 0.735(2) 0.485(2) 0.463(5) 
0.3403 36 36 108 3.75(1) 0.416(4) 0.155(3) 0.1566) 
0.3403 36 18 256 2.64(1) 0.415(4) 0.168(4) 0.156(5) 
0.3403 36 36 256 3.77(1) 0.415(4) 0.1470) 0.156(5) 
0.400 36 36 256 4.50(1) 0.239(4) 0.074(3) 0.086(4) 
0.450 18 18 256 4.30(1) 0.23314) 0.041(3) 0.039(2) 
0.450 36 18 256 4.10(1) 0.205(5) 0.040(3) 0.039(2) 
0.450 36 36 256 5.7.2(1) 0.205(5) 0.041(3) 0.039(2) 

viscosity can be attributed to this decrease in the self-diffusion coefficients. As noted for 
the viscosity, the value of the long-time self-diffusion coefficient is insensitive to the value 
of m, as the value of C changes to compensate in order to produce the same short-time 
self-diffusion coefficient. 

5. Conclusions 

We propose equations of motion that include a mean-field representation of many-body 
hydrodynamics, MBH. These have been implemented in a Brownian dynamics algorithm. 
The model is semi-empirical, in that it includes the known short-time-scale properties 
of near-hard-sphere colloidal liquids, and is therefore best referred to as mean-field 
hydrodynamics, MFH. It incorporates short-time hydrodynamics effects in the form of a 
local density approximation for the friction coefficient on each model colloidal particle, 
without requirement for a computationally expensive tensorial treatment of the system. The 
parameters in the mean-field model are adjusted to achieve agreement with the experimental 
short-time self-diffusion coefficients. 

The computed viscosities of the MFH systems are typically three to four times larger than 
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those of the corresponding freedraining level simulations, as a result of slower structural 
(and therefore stress) relaxations in the systems. The colloidal assemblies are retarded 
in their structural evolution by virtue of the changes that we have made to the equations 
of motion. We find excellent agreement between experimental and computed long-time 
self-diffusion coefficients. 
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